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Abstract In this paper we investigate a boundary value problem for a coupled non-
linear differential system of fractional order. Under appropriate hypotheses and by
applying the critical point theorem, we obtain some new criteria to guarantee that
the fractional differential system has infinitely many weak solutions. In addition, an
example is given to illustrate the main results.
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1 Introduction

In this paper we are concerned with the existence and multiplicity of weak solutions
for the following fractional differential system
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⎧
⎨

⎩

t Dα
T (a(t)0Dα

t u(t)) = λ Fu(t, u(t), v(t)) + h1(u(t)), 0 < t < T,

t Dβ
T (b(t)0Dβ

t v(t)) = λ Fv(t, u(t), v(t)) + h2(v(t)), 0 < t < T,

u(0) = u(T ) = 0, v(0) = v(T ) = 0,
(1.1)

where λ is a positive real parameter, 0 < α, β ≤ 1, a, b ∈ L∞[0, T ] with a0 :=
ess inf [0,T ] a(t) > 0 and b0 := ess inf [0,T ] b(t) > 0, 0Dγ

t and t Dγ

T denote the left
and right Riemann–Liouville fractional derivatives of order γ respectively, and F :
[0, T ] × R2 → R is a function such that F(·, x, y) is continuous in [0, T ] for every
(x, y) ∈ R2 and F(t, ·, ·) is a C1 function inR2 for any t ∈ [0, T ], and Fu, Fv denote
the partial derivative of F, with respect to u, v respectively. h1, h2 : R → R be two
Lipschitz continuous functions with the Lipschitz constants L1, L2 ≥ 0; i.e.,

|hi (x1) − hi (x2)| ≤ Li |x1 − x2|, i = 1, 2 (1.2)

for every x1, x2 ∈ R, satisfying hi (0) = 0, i = 1, 2.
Fractional differential equations have gained importance due to their numerous

applications in various fields of science and engineering, such as fluid flow, diffusive
transport akin to diffusion, rheology, probability, electrical networks, etc. For details,
see [1–3]. Recently, a great deal of work has been done in the study of the existence and
uniqueness of solutions to nonlinear fractional differential equations (see [1–10,31–
33] and the references therein). Some classical tools have been used to investigate such
problems in the literature, such as some fixed point theorems in cones, the coincidence
degree theory of Mawhin, and the method of upper and lower solutions with the
monotone iterative technique. The study of a coupled system of fractional order is
also very significant because this kind of system can often occur in applications; (see
[11–15]). Using the Krasnoselskii’s fixed point theorem and the nonlinear alternative
of Leray–Schauder theorem in a cone, Bai and Fang [11] studied the existence of
a positive solution to singular coupled system of fractional order. By applying the
Schauder fixed point theorem, Ahmad and Nieto [13] discussed the existence of a
coupled differential system of fractional order with three-point boundary conditions.

On the other hand, critical point theory has been very useful in dealingwith the exis-
tence and multiplicity of solutions for integer order differential equations with some
boundary conditions. We refer readers to the books due to Mawhin and Willem[18],
Schechter[19], and the papers [20–24] and the references therein. But until now, there
are few works that deal with the fractional boundary value problems and boundary
value systems via the variationalmethods; see [16,17,25–30]. Besides, it isworthmen-
tioning that the fractional calculus of variations was introduced in [25]. By means of
critical point theory, Jiao and Zhou [16] considered the following fractional boundary
value problems

{
t Dα

T (0Dα
t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (0, 1], 0Dα
t and t Dα

T are the left and right Riemann–Liouville fractional
derivatives respectively. F : [0, T ] × RN → R (with N ≥ 1) is a suitable given
function and ∇F(t, u) is the gradient of F with respect to u.
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In [28], Bai investigated the following perturbed nonlinear fractional boundary
value problems

{
t Dα

T (0Dα
t u(t)) = λ a(t) f (u(t)) + μg(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.3)

where α ∈ (0, 1], λ, μ are non-negative parameters, a : [0, T ] → R, f : R → R
and g : [0, T ] × R → R are three continuous functions. By using a recent critical
point theorem of Bonanno and Molica Bisci [21], the existence of infinitely many
solutions for the problem (1.3) depending on two parameters are obtained.

In [15], By applying the critical point theorem due to Bonanno andMarano [22], we
provided a new approach to studied the existence of weak solutions for the following
fractional differential system

⎧
⎪⎨

⎪⎩

t Dα
T (a(t)0Dα

t u(t)) = λ Fu(t, u(t), v(t)), 0 < t < T,

t Dβ
T (b(t)0Dβ

t v(t)) = λ Fv(t, u(t), v(t)), 0 < t < T,

u(0) = u(T ) = 0, v(0) = v(T ) = 0.

(1.4)

The main result is as follows.
In this article, we need the following conditions.

(H0) 1
2 < α, β ≤ 1.

(H1) F : [0, T ] ×R2 → R be a function such that F(·, u, v) is continuous in [0, T ]
for every (u, v) ∈ R2, F(t, ·, ·) is a C1 function in R2.

Put

M = max

{
T 2α−1

(�(α))2a0(2α − 1)
,

T 2β−1

(�(β))2b0(2β − 1)

}

,

L = max

{
T 2α

(�(α + 1))2a0
,

T 2β

(�(β + 1))2b0

}

. (1.5)

Theorem 1.1 ([15, Theorem 3.1]) Assume that F(t, 0, 0) = 0 for all t ∈ [0, T ] and
(H0),(H1) hold. Furthermore suppose that there exist a constant r > 0 and a function
ω = (ω1, ω2) such that

(C1) ‖ω1‖2α + ‖ω2‖2β > 2r;

(C2)

∫ T
0 sup(ξ,η)∈	(Mr) F(t, ξ, η)dt

r
<

2
∫ T
0 F(t, ω1(t), ω2(t))dt

‖ω1‖2α + ‖ω2‖2β
;

(C3) lim inf |ξ |→+∞,|η|→+∞
F(t, ξ, η)

|ξ |2 + |η|2 <

∫ T
0 sup(ξ,η)∈	(Mr) F(t, ξ, η)dt

2Lr
,

where 	(Mr) = {(ξ, η) ∈ R2 : 1
2 |ξ |2 + 1

2 |η|2 ≤ Mr}.
Then, for each

λ ∈ 
 :=
] ‖ω1‖2α + ‖ω2‖2β
2

∫ T
0 F(t, ω1(t), ω2(t))dt

,
r

∫ T
0 sup(ξ,η)∈	(Mr) F(t, ξ, η)dt

[

,
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the coupled system (1.4) has at least three distinct weak solutions.

Motivated by the above work, in this paper we devote to study the multiplicity of
weak solutions of problem (1.1) via variational method. To our knowledge, the study
of solutions for nonlinear fractional differential system using variational method has
received considerably less attention. Our main contributions in this article include two
aspects. Firstly, we successfully construct a suitable space and obtain a variational
functional for problem (1.1), and consequently establish some new results for the
existence of infinitelymany solutions of problem (1.1) using the critical point theorem.
Another contribution is that, through this work, we have successfully shown that the
critical point theory is an effective approach to deal with the existence of solutions for
fractional differential system. The rest of the article is organized as follows. In Sect. 2,
some definitions and lemmas that will be useful for our main results are given. In Sect.
3, Several criteria for the existence of infinitely many weak solutions of the coupled
system (1.1) are established and an example is presented to illustrate the main results.

2 Preliminaries

To construct appropriate function spaces and apply critical point theory to investigate
the existenceof solutions for problem (1.1),weneed the following somebasic notations
and results which will be used in the proof of our main results.

Let C∞
0 ([0, T ],RN) be the set of all functions x ∈ C∞

0 ([0, T ],RN) with x(0) =
x(T ) = 0 and the norm

‖x‖∞ = max[0,T ] |x(t)|. (2.1)

Denote the norm of the space L p([0, T ],RN) for 1 ≤ p < ∞ by

‖x‖L p =
(∫ T

0
|x(s)|pds

)1/p

.

The following lemma yields the boundedness of the Riemann–Liouville fractional
integral operators from the space L p([0, T ],RN) to the space L p([0, T ],RN), where
1 ≤ p < ∞.

Lemma 2.1 ([17]) Let 0 < α ≤ 1, 1 ≤ p < ∞ and f ∈ L p([0, T ],RN). Then

‖0D−α
ξ f ‖L p([0,t]) ≤ tα

�(α + 1)
‖ f ‖L p([0,t]), for ξ ∈ [0, t], t ∈ [0, T ],

where 0D−α
t is left Riemann–Liouville fractional integral of order α.

Definition 2.2 Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined by the

closure of C∞
0 ([0, T ],R), that is

Eα
0 = C∞

0 ([0, T ],R)
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with respect to the weighted norm

‖u‖α =
(∫ T

0
a(t)|0Dα

t u(t)|2dt +
∫ T

0
|u(t)|2dt

)1/2

, ∀u ∈ Eα
0 . (2.2)

Clearly, the fractional derivative space Eα
0 is the space of functions u ∈ L2[0, T ]

having an α-order fractional derivative 0Dα
t u ∈ L2[0, T ] and u(0) = u(T ) = 0.

From [17, Proposition3.1], we know for 0 < α ≤ 1, the space Eα
0 is a reflexive and

separable Banach space.

Lemma 2.3 ([15]) Let 0 < α ≤ 1. For any u ∈ Eα
0 , we have

‖u‖L2 ≤ T α

�(α + 1)
√

a0

(∫ T

0
a(t)|0Dα

t u(t)|2dt

)1/2

. (2.3)

Moreover, if α > 1
2 , then

‖u‖∞ ≤ T α− 1
2

�(α)
√

a0(2α − 1)

(∫ T

0
a(t)|0Dα

t u(t)|2
)1/2

. (2.4)

By (2.3), we can consider Eα
0 with respect to the norm

‖u‖α =
(∫ T

0
a(t)|0Dα

t u(t)|2dt

)1/2

, ∀u ∈ Eα
0 , (2.5)

which is equivalent to (2.2).
For further purpose we will consider the fractional derivative space Eβ

0 be defined
by the closure of C∞

0 ([0, T ],R) with respect to the weighted norm

‖v‖β =
(∫ T

0
b(t)|0Dβ

t v(t)|2dt +
∫ T

0
|v(t)|2dt

)1/2

, ∀v ∈ Eβ
0 . (2.6)

Lemma 2.4 ([15]) Let 0 < β ≤ 1. For any u ∈ Eβ
0 , one has

‖v‖L2 ≤ T β

�(β + 1)
√

b0

(∫ T

0
b(t)|0Dβ

t v(t)|2dt

)1/2

. (2.7)

Moreover, if β > 1
2 , then

‖v‖∞ ≤ T β− 1
2

�(β)
√

b0(2β − 1)

(∫ T

0
b(t)|0Dβ

t v(t)|2
)1/2

. (2.8)
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Obviously, the space Eβ
0 is also a reflexive and separable Banach space with the morm

‖v‖β =
(∫ T

0
b(t)|0Dβ

t v(t)|2dt

)1/2

, ∀v ∈ Eβ
0 , (2.9)

which is equivalent to (2.6).
Similarly to [17, proposition 3.3], we have the following property of the fractional

derivative space Eα
0 (or Eβ

0 ).

Lemma 2.5 Assume that 1
2 < α ≤ 1 and the sequence {un} converges weakly to u in

Eα
0 , i.e. un ⇀ u. Then {un} converges strongly to u in C([0, T ],R), i.e. ‖un −u‖∞ →

0, as n → ∞.

In the sequel, X will denote the space Eα
0 × Eβ

0 , which is a reflexive Banach space
endowed with the norm

‖(u, v)‖X = ‖u‖α + ‖v‖β, (2.10)

where ‖u‖α and ‖v‖β are defined in (2.5) and (2.9), respectivelly. Obviously, X is
compactly embedded in C0([0, T ],R) × C0([0, T ],R).

Definition 2.6 By the weak solution of problem (1.1), we mean any (u, v) ∈ X such
that

∫ T

0
a(t)0Dα

t u(t)0Dα
t x(t)dt +

∫ T

0
b(t)0Dβ

t v(t)0Dβ
t y(t)dt −

∫ T

0
h1(u(t))x(t)dt

−
∫ T

0
h2(v(t))y(t)dt−λ

∫ T

0
(Fu(t, u(t), v(t))x(t)+Fv(t, u(t), v(t))y(t)) dt =0

for every (x, y) ∈ X.

We define

Hi (x) =
∫ x

0
hi (z)dz, and �i (x) =

∫ T

0
Hi (x(s))ds i = 1, 2 (2.11)

for every t ∈ [0, T ] and x ∈ R.

Lemma 2.7 Assume that h1, h2 : R → R satisfy (1.2) and Hi (x),�i (x), (i = 1, 2)
defined by (2.11). Then the functional �(u, v) : X → R defined by

�(u, v) := �1(u) + �2(v) =
∫ T

0
H1(u(t))dt +

∫ T

0
H2(v(t))dt (2.12)

is a Gâteaux differentiable sequentially weakly continuous functional on X with com-
pact derivative

�′(u, v)(x, y) =
∫ T

0
h1(u(t))x(t)dt +

∫ T

0
h2(v(t))y(t)dt
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for every (x, y) ∈ X.

Proof Suppose that {(un, vn)} ⊂ X, (un, vn) ⇀ (u, v) in X as n → +∞. It follows
from Lemma 2.5 that (un, vn) converges uinformly to (u, v) on [0, T ]. Thus, there
exist constants c1, c2 > 0 such that ‖un‖∞ ≤ c1 and ‖vn‖∞ ≤ c2 for any n ∈ N.

Then

|H1(un(t)) − H1(u(t))| ≤ L1

∣
∣
∣
∣
∣

∫ un(t)

u(t)
|s|ds

∣
∣
∣
∣
∣
≤ L1

2
(|un(t)|2 + |u(t)|2)

≤ L1

2
(c21 + ‖u‖2∞),

and

|H2(vn(t)) − H2(v(t))| ≤ L2

∣
∣
∣
∣
∣

∫ vn(t)

v(t)
|s|ds

∣
∣
∣
∣
∣
≤ L2

2
(|vn(t)|2 + |v(t)|2)

≤ L2

2
(c22 + ‖v‖2∞)

for any n ∈ N and t ∈ [0, T ]. Furthermore, H1(un(t)) → H1(u(t)) and H2(vn(t)) →
H2(v(t)) at every t ∈ [0, T ], and by the Lebesgue Convergence Theorem

�(un, vn) =
∫ T

0
H1(un(t))dt +

∫ T

0
H2(vn(t))dt →

∫ T

0
H1(u(t))dt

+
∫ T

0
H2(v(t))dt = �(u, v).

Next we show Gâteaux differentiability of �. Suppose u, x ∈ Eα
0 and s 
= 0 then

∣
∣
∣
∣
�1(u + sx) − �1(u)

s
−

∫ T

0
h1(u(t))x(t)dt

∣
∣
∣
∣

≤
∫ T

0

∣
∣
∣
∣

H1(u + sx) − H1(u)

s
− h1(u(t))x(t)

∣
∣
∣
∣ dt

=
∫ T

0
|h1(u(t) + sζ(t)x(t)) − h1(u(t))||x(t)|dt

≤ L1‖x‖2∞|s|,

where 0 < ζ(t) < 1 for any t ∈ [0, T ]. Therefore, �1 : Eα
0 → R is a Gâteaux

differentiable at any u ∈ Eα
0 .
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Analogously, we have that�2 : Eβ
0 → R is a Gâteaux differentiable at any v ∈ Eβ

0 .

Hence, � : X → R is a Gâteaux differentiable at any (u, v) ∈ X with derivative

�′(u, v)(x, y) =
∫ T

0
h1(u(t))x(t)dt +

∫ T

0
h2(v(t))y(t)dt

for every (x, y) ∈ X.

For any three elements (u1, v1), (u2, v2) and (x, y) of X , it is easy to see that

(�′(u1, v1) − �′(u2, v2))(x, y) =
∫ T

0
(h1(u1) − h1(u2))x(t)dt

+
∫ T

0
(h2(v1) − h2(v2))y(t)dt

≤ L1

∫ T

0
|u1−u2||x(t)|dt+L2

∫ T

0
|v1−v2||y(t)|dt

≤ L1T α+ 1
2

�(α)
√

a0(2α − 1)
‖u1 − u2‖∞‖x‖α

+ L2T β+ 1
2

�(β)
√

b0(2β − 1)
‖v1 − v2‖∞‖y‖β,

which implies

‖�′(u1, v1) − �′(u2, v2)‖X ≤ T ∗(‖u1 − u2‖∞ + ‖v1 − v2‖∞),

where

T ∗ := max

{
L1T α+ 1

2

�(α)
√

a0(2α − 1)
,

L2T β+ 1
2

�(β)
√

b0(2β − 1)

}

.

Hence �′ : X → X∗ is a compact operator.
Similarly to the proof of [16, Theorem 5.1], we have ��

Lemma 2.8 Let 1
2 < α, β ≤ 1 and (u, v) ∈ X. If (u, v) is a non-trivial weak solution

of problem (1.1), then (u, v) is also a non-trivial solution of problem (1.1).
Our analysis is mainly based on the following critical points theorem of Bonanno

and Molica Bisci [21], which is a more precise result of Ricceri [20, Theorem 2.5]:

Lemma 2.9 ([21, Theorem 2.1]). Let X be a reflexive real Banach space. Let �,� :
X → R be two Gâteaux differentiable functionals such that � is sequentially weakly
lower semicontinuous, strongly continuous, and coercive and � is sequentially weakly
upper semicontinuous. For every r > inf X �, put

ϕ(r) := inf
u∈�−1(]−∞,r [)

supv∈�−1(]−∞,r [) �(v) − �(u)

r − �(u)
,

123



www.manaraa.com

Infinitely many solutions for fractional differential . . . 597

and

γ := lim inf
r→+∞ ϕ(r), δ := lim inf

r→(infX �)+
ϕ(r).

Then,

(1) If γ < +∞ and λ ∈]0, 1
γ
[, the following alternative holds: either the functional

� − λ � has a global minimum, or there exists a sequence {un} of local minima
of � − λ � such that lim

n→+∞ �(un) = +∞.

(2) If δ < +∞ and λ ∈]0, 1
δ
[, the following alternative holds: either there exists

a global minimum of � which is a local minimum of � − λ�, or there
exists a sequence {un} of pairwise distinct local minima of � − λ �, with
limn→+∞ �(un) = infX �, which weakly converges to a global minimum of
�.

3 Main results and proof

In this section, we will state and prove our main results. For convenience, put

κ := min

{

1 − L1T 2α

(�(α + 1))2a0
, 1 − L2T 2β

(�(β + 1))2b0

}

, (3.1)

ρ := max

{

1 + L1T 2α

(�(α + 1))2a0
, 1 + L2T 2β

(�(β + 1))2b0

}

. (3.2)

For a given constant θ ∈ (0, 1
2 ), set

P(α, θ) = 1

2θ2T 2

{∫ T

0
a(t)t2(1−α)dt +

∫ T

θT
a(t)(t − θT )2(1−α)dt

+
∫ T

(1−θ)T
a(t)(t−(1 − θ)T )2(1−α)dt−2

∫ T

(1−θ)T
a(t)(t2−(1−θ)T t)1−αdt

− 2
∫ T

θT
a(t)(t2−θT t)1−αdt+2

∫ T

(1−θ)T
a(t)(t2−θT t+θ(1−θ)T 2)1−αdt

}

,

and

Q(β, θ) = 1

2θ2T 2

{∫ T

0
b(t)t2(1−β)dt +

∫ T

θT
b(t)(t − θT )2(1−β)dt

+
∫ T

(1−θ)T
b(t)(t−(1−θ)T )2(1−β)dt−2

∫ T

(1−θ)T
b(t)(t2−(1−θ)T t)1−βdt

− 2
∫ T

θT
b(t)(t2−θT t)1−βdt+2

∫ T

(1−θ)T
b(t)(t2−T t+θ(1−θ)T 2)1−βdt

}

.
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For any d > 0 we denote by 	(d) the set

{

(x, y) ∈ R2 : 1

2
|x |2 + 1

2
|y|2 ≤ d

}

. (3.3)

Theorem 3.1 Assume that κ > 0 and (H0), (H1) hold. Furthermore
(H2) F(t, x, y) ≥ 0 for all (t, x, y) ∈ [0, T ] × [0,+∞) × [0,+∞);
(H3) There exists θ ∈ (0, 1

2 ) such that, if we put

A∞ := lim inf
ξ→+∞

∫ T
0 sup|x |+|y|≤ξ F(t, x, y)dt

ξ2
, and

B∞ := lim sup
ξ→+∞

∫ (1−θ)T
θT F(t, �(2 − α)ξ, �(2 − β)ξ)dt

ξ2
,

one has

A∞ <
κ

8Mρ�
B∞. (3.4)

where � := max{P(α, θ), Q(β, θ)} and M is given in (1.5).
Then, for every

λ ∈ 
 :=
]

ρ�

B∞
,

κ

8M A∞

[

,

problem (1.1) admits an unbounded sequence of weak solutions in X.

Proof Our aim is to apply part (1) of Lemma 2.9 to problem (1.1). We begin by taking
X = Eα

0 × Eβ
0 endowed with the norm ‖(u, v)‖X as considered in (2.10). Define the

functional Iλ : X → R given by

Iλ(u, v) = �(u, v) − λ �(u, v)

for all (u, v) ∈ X, where

�(u, v) = 1

2
‖u‖2α + 1

2
‖v‖2β − �(u, v), (3.5)

and

�(u, v) =
∫ T

0
F(t, u(t), v(t))dt. (3.6)

Since X is compactly embedded in C0([0, T ],R) × C0([0, T ],R), it is well known
that � is well-defined Gâteaux differentiable functional whose Gâteaux derivative at
the point (u, v) ∈ X is the functional � ′(u, v) ∈ X∗, given by
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� ′(u, v)(x, y) =
∫ T

0
(Fu(t, u(t), v(t))x(t) + Fv(t, u(t), v(t))y(t)) dt

for every (x, y) ∈ X.

We claim that the functional� is a sequentially weakly upper semicontinuous func-
tional on X. Indeed, for fixed (u, v) ∈ X, suppose that {(un, vn)} ⊂ X, (un, vn) ⇀

(u, v) in X as n → +∞. Then (un, vn) converges uinformly to (u, v) on [0, T ].
Hence

lim sup
n→+∞

�(un, vn) ≤
∫ T

0
lim sup

n→+∞
F(t, un, vn)dt =

∫ T

0
F(t, u, v)dt = �(u, v),

which implies that � is sequentially weakly upper semicontinuous. Hence the claim
is true.

As concerns the functional�,we can show that� defined by (3.5) is a sequentially
weakly lower semicontinuous, strongly continuous, and coercive functional on X.

In fact, since (1.2) holds for every x1, x2 ∈ R and h1(0) = h2(0) = 0, one has
|hi (x)| ≤ Li |x |, i = 1, 2 for all x ∈ R. It follows from (2.3), (2.7) and Lemma 2.5
that

�(u, v) ≥ 1

2
‖u‖2α + 1

2
‖v‖2β −

∣
∣
∣
∣

∫ T

0
H1(u(t))dt

∣
∣
∣
∣ −

∣
∣
∣
∣

∫ T

0
H2(v(t))dt

∣
∣
∣
∣

≥ 1

2
‖u‖2α + 1

2
‖v‖2β − L1

2

∫ T

0
|u(t)|2dt − L2

2

∫ T

0
|v(t)|2dt

≥
(
1

2
− L1T 2α

2(�(α + 1))2a0

)

‖u‖2α +
(
1

2
− L2T 2β

2(�(β + 1))2b0

)

‖v‖2β
≥ κ

2
(‖u‖2α + ‖v‖2β), (3.7)

for all (u, v) ∈ X and similarly

�(u, v) ≤ 1

2
‖u‖2α + 1

2
‖v‖2β +

∣
∣
∣
∣

∫ T

0
H1(u(t))dt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0
H2(v(t))dt

∣
∣
∣
∣

≤
(
1

2
+ L1T 2α

2(�(α + 1))2a0

)

‖u‖2α +
(
1

2
+ L2T 2β

2(�(β + 1))2b0

)

‖v‖2β
≤ ρ

2
(‖u‖2α + ‖v‖2β). (3.8)

for all (u, v) ∈ X. So � is coercive. ��

Moreover,�+� is a continuous functional on X and�, fromLemma 2.5, is aGâteaux
differentiable sequentially weakly continuous and therefore continuous on X, then �

is a continuous functional on X. It is not difficult to verify that the functional � is a
Gâteaux differentiable functional with the differential
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�′(u, v)(x, y) =
∫ T

0
a(t)0Dα

t u(t)0Dα
t x(t)dt +

∫ T

0
b(t)0Dβ

t v(t)0Dβ
t y(t)dt

−
∫ T

0
h1(u(t))x(t)dt −

∫ T

0
h2(v(t))y(t)dt.

Furthermore, � is also sequentially weakly lower semicontinuous on X since � is
sequentially weakly lower semicontinuous, and if (un, vn) ⇀ (u, v) in X then

lim inf
n→∞ �(un, vn) = lim inf

n→∞

(
1

2
‖un‖2α + 1

2
‖vn‖2β

)

− lim
n→∞ �(un, vn)

≥ 1

2
‖u‖2α + 1

2
‖v‖2β − �(u, v) = �(u, v).

It is easy to show that the critical points of the functional Iλ and the weak solutions
of the problem (1.1) are the same and by Lemma 2.9 we prove our result.

According to (2.1), taking (2.4) and (2.8) into account, one has

max
t∈[0,T ] |u(t)|2 ≤ M‖u‖2α and max

t∈[0,T ] |v(t)|2 ≤ M‖v‖2β

for every (u, v) ∈ X.

Hence

max
t∈[0,T ](|u(t)|2 + |v(t)|2) ≤ M(‖u‖2α + ‖v‖2β).

So, for every r > 0, from the definition of � and by using (3.7) one has

�−1(] − ∞, r ]) : = {(u, v) ∈ X : �(u, v) ≤ r}
⊆

{

(u, v) ∈ X : 1

2
‖u‖2α + 1

2
‖v‖2β ≤ r

κ

}

⊆
{

(u, v) ∈ X : (�(α))2a0(2α − 1)

2T 2α−1 ‖u‖2∞

+ (�(β))2b0(2β − 1)

2T 2β−1 ‖v‖2∞ ≤ r

κ

}

⊆
{

(u, v) ∈ X : 1

2
|u(t)|2+ 1

2
|v(t)|2≤ Mr

κ
, for all t ∈ [0, T ]

}

.

(3.9)

Set

ϕ(r) := inf
(u,v)∈�−1(]−∞,r [)

(
sup(x,y)∈�−1(]−∞,r [) �(x, y)

) − �(u, v)

r − �(u, v)
.
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Note that �(0, 0) = 0, and from the condition (H1), �(0, 0) ≥ 0. Hence, for every
r > 0,

ϕ(r) = inf
(u,v)∈�−1(]−∞,r [)

(
sup(x,y)∈�−1(]−∞,r [) �(x, y)

) − �(u, v)

r − �(u, v)

≤ sup(x,y)∈�−1(]−∞,r [) �(x, y)

r

= sup�(u,v)<r

∫ T
0 F(t, u, v)dt

r
,

and it follows from (3.9) that

ϕ(r) ≤ 1

r
sup

	
(

Mr
κ

)

∫ T

0
F(t, u, v)dt

where 	
( Mr

κ

) := {(u, v) ∈ X : 1
2 |u(t)|2 + 1

2 |v(t)|2 < Mr
κ

,∀t ∈ [0, T ]}.
Let {ξn} be a sequence of positive numbers such that ξn → +∞ and

lim
n→+∞

∫ T
0 sup|x |+|y|<ξn

F(t, x, y)dt

ξ2n
= A∞ < +∞.

Put rn := κ
8M ξ2n for all n ∈ N. Let (u, v) ∈ �−1(] − ∞, rn[), by (3.9) one has

1

2
|u(t)|2 + 1

2
|v(t)|2 ≤ M

κ
rn, ∀t ∈ [0, T ],

which implies

|u(t)| ≤
√
2Mrn

κ
and |v(t)| ≤

√
2Mrn

κ
.

Hence, for n large enough (rn > 1)

|u(t)| + |v(t)| ≤ 2

√
2Mrn

κ
= ξn .

Thus, for all n ∈ N

ϕ(rn) = 8M

κξ2n
· sup
{(u,v)∈X : |u(t)|+|v(t)|<ξn,∀t∈[0,T ]}

∫ T

0
F(t, u, v)dt

≤ 8M

κ
·
∫ T
0 sup|x |+|y|<ξn

F(t, x, y)dt

ξ2n
.
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Let

γ := lim inf
r→+∞ ϕ(r).

Then

γ ≤ lim inf
n→+∞ ϕ(rn)

≤ 8M

κ
· lim

n→+∞

∫ T
0 sup|x |+|y|<ξn

F(t, x, y)dt

ξ2n

= 8M

κ
A∞ < +∞.

Hence, 
 ⊆]0, 1
γ
[.

For λ ∈ 
, we shall show that the functional Iλ is unbounded from below. Indeed,
since B∞

ρ�
> 1

λ
, we can choose a sequence {ηn} of positive numbers and ε > 0 such

that ηn → +∞ and

1

λ
< ε <

1

ρ�
·
∫ (1−θ)T
θT F(t, �(2 − α)ηn, �(2 − β)ηn)dt

η2n
, (3.10)

for n large enough.
For all n ∈ N, and θ ∈ (

0, 1
2

)
define ωn = (ω1,n(t), ω2,n(t)) by setting

ω1,n(t) =
⎧
⎨

⎩

�(2−α)ηn
θT t, t ∈ [0, θT [,

�(2 − α)ηn, t ∈ [θT, (1 − θ)T ],
�(2−α)ηn

θT (T − t), t ∈](1 − θ)T, T ]
(3.11)

and

ω2,n(t) =
⎧
⎨

⎩

�(2−β)ηn
θT t, t ∈ [0, θT [,

�(2 − β)ηn, t ∈ [θT, (1 − θ)T ],
�(2−β)ηn

θT (T − t), t ∈](1 − θ)T, T ].
(3.12)

Clearly ωi,n(0) = ωi,n(T ) = 0 and ωi,n ∈ L2[0, T ] for i = 1, 2. A direct calculation
shows that

0Dα
t ω1,n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ηn
θT t1−α, t ∈ [0, θT [,
ηn
θT (t1−α − (t − θT )1−α), t ∈ [θT, (1 − θ)T ],
ηn
θT (t1−α − (t − θT )1−α − (t − (1 − θ)T )1−α), t ∈](1 − θ)T, T ]
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and

0Dβ
t ω2,n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ηn
θT t1−β, t ∈ [0, θT [,
ηn
θT (t1−β − (t − θT )1−β), t ∈ [θT, (1 − θ)T ],
ηn
θT (t1−β − (t − θT )1−β − (t − (1 − θ)T )1−β), t ∈](1 − θ)T, T ].

Furthermore,

∫ T

0
a(t)|0Dα

t ω1,n(t)|2dt =
∫ θT

0
+

∫ (1−θ)T

θT
+

∫ T

(1−θ)T
(a(t)|0Dα

t ω1,n(t)|2dt

= η2n

θ2T 2

{∫ T

0
a(t)t2(1−α)dt +

∫ T

θT
a(t)(t − θT )2(1−α)dt

+
∫ T

(1−θ)T
a(t)(t − (1 − θ)T )2(1−α)dt

−2
∫ T

θT
a(t)(t2 − θT t)1−αdt

−2
∫ T

(1−θ)T
a(t)(t2 − (1 − θ)T t)1−αdt

+2
∫ T

(1−θ)T
a(t)(t2 − θT t + θ(1 − θ)T 2)1−αdt

}

= 2P(α, θ)η2n,

and

∫ T

0
b(t)|0Dβ

t ω2,n(t)|2dt =
∫ θT

0
+

∫ (1−θ)T

θT
+

∫ T

(1−θ)T
b(t)|0Dβ

t ω2,n(t)|2dt

= η2n

θ2T 2

{∫ T

0
b(t)t2(1−β)dt +

∫ T

θT
b(t)(t − θT )2(1−β)dt

+
∫ T

(1−θ)T
b(t)(t − (1 − θ)T )2(1−β)dt

−2
∫ T

θT
b(t)(t2 − θT t)1−βdt

−2
∫ T

(1−θ)T
b(t)(t2 − (1 − θ)T t)1−βdt

+2
∫ T

(1−θ)T
b(t)(t2 − T t + θ(1 − θ)T 2)1−βdt

}

= 2Q(β, θ)η2n .
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Thus, ωn ∈ X, and

‖ω1,n‖2α =
∫ T

0
a(t)|0Dα

t ω1,n(t)|2dt = 2P(α, θ)η2n,

‖ω2,n‖2β =
∫ T

0
b(t)|0Dβ

t ω2,n(t)|2dt = 2Q(β, θ)η2n .

This and (3.8) imply that

�(ω1,n, ω2,n) = 1

2
‖ω1,n‖2α + 1

2
‖ω2,n‖2β − �(ω1,n, ω2,n)

≤ ρ

2
(‖ω1,n‖2α + ‖ω2,n‖2β)

= ρ(P(α, θ) + Q(β, θ))η2n ≤ ρ�η2n . (3.13)

From (H2), we have

�(ω1,n, ω2,n) =
∫ θT

0
+

∫ (1−θ)T

θT
+

∫ T

(1−θ)T
F(t, ω1,n, ω2,n)dt

≥
∫ (1−θ)T

θT
F(t, ω1,n, ω2,n)dt

=
∫ (1−θ)T

θT
F(t, �(2 − α)ηn, �(2 − β)ηn)dt. (3.14)

According to (3.10), (3.13) and (3.14), we have

Iλ(ω1,n, ω2,n) = �(ω1,n, ω2,n) − λ �(ω1,n, ω2,n)

≤ ρ(P(α, θ) + Q(β, θ))η2n − λ

∫ (1−θ)T

θT

×F(t, �(2 − α)ηn, �(2 − β)ηn)dt

≤ ρ�(1 − λ ε)η2n .

for n large enough. Taking into account the choice of ε, the above inequality shows
that

lim
n→+∞ Iλ(ω1,n, ω2,n) = −∞,

which implies the functional Iλ is unbounded from below and the claim follows.
By using the case (1) of Lemma 2.9, the functional Iλ has a sequence {(un, vn)}

of critical points such that �(un, vn) → +∞. From (2.10) and (3.8), we get

‖(un, vn)‖X ≥
√

2�(un ,vn)
ρ

, which implies ‖(un, vn)‖X → +∞, and the proof of
Theorem 3.1 is complete.
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Theorem 3.2 Assume that κ > 0 and (H0), (H2) hold. Furthermore
(H4) F(t, 0, 0) = 0 for all t ∈ [0, T ].
(H5) There exists θ ∈ (0, 1

2 ) such that, if we put

A0 := lim inf
ξ→0+

∫ T
0 sup|x |+|y|≤ξ F(t, x, y)dt

ξ2
and

B0 := lim sup
ξ→0+

∫ (1−θ)T
θT F(t, �(2 − α)ξ, �(2 − β)ξ)dt

ξ2
,

one has

A0 <
κ

8Mρ�
B0. (3.15)

where � = max{P(α, θ), Q(β, θ)} and M is given in (1.5).
Then, for every

λ ∈ 
′ :=
]
ρ�

B0
,

κ

8M A0

[

,

problem (1.1) admits a sequence {(un, vn)} of weak solutions such that (un, vn) ⇀

(0, 0).

Proof Our goal is to apply part (2) of Lemma 2.9 to � and � defined in (3.3) and
(3.4) respectively. As it has been pointed out before, the functionals �,� satisfy the
assumptions regularity required in Lemma 2.9.

Since F(t, 0, 0) = 0 for all t ∈ [0, T ]. Then min(u,v)∈X �(u, v) = �(0, 0) = 0.
Let {ζn} be a sequence of positive numbers such that ζn → 0 and

lim
n→+∞

∫ T
0 sup|x |+|y|<ζn

F(t, x, y)dt

ζ 2
n

= A0 < +∞.

Setting rn = κ
8M ζ 2

n for all n ∈ N, and working as in the proof of Theorem 3.1, we
can show that

δ = lim inf
r→(infX �)+

ϕ(r) ≤ 8M

κ
· lim

n→+∞

∫ T
0 sup|x |+|y|<ζn

F(t, x, y)dt

ζ 2
n

= 8M

κ
A0,

and so 
′ ⊂]0, 1
δ
[.

Now fix λ as in the conclusion, then

1

λ
<

1

ρ�
lim sup
ξ→0+

∫ (1−θ)T
θT F(t, �(2 − α)ξ, �(2 − β)ξ)dt

ξ2
,
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and there exist a sequence {τn} of positive numbers and a constant ε1 such that τn ≤ 1
n

and

lim
n→+∞

∫ (1−θ)T
θT F(t, �(2 − α)τn, �(2 − β)τn)dt

τ 2n

= lim sup
ξ→0+

∫ (1−θ)T
θT F(t, �(2 − α)ξ, �(2 − β)ξ)dt

ξ2
,

and in addition

1

λ
< ε1 <

1

ρ�
lim

n→+∞

∫ (1−θ)T
θT F(t, �(2 − α)τn, �(2 − β)τn)dt

τ 2n
.

For all n ∈ N, and θ ∈ (
0, 1

2

)
define ωn = (ω1,n(t), ω2,n(t)) by setting

ω1,n(t) =
⎧
⎨

⎩

�(2−α)τn
θT t, t ∈ [0, θT [,

�(2 − α)τn, t ∈ [θT, (1 − θ)T ],
�(2−α)τn

θT (T − t), t ∈](1 − θ)T, T ]

and

ω2,n(t) =
⎧
⎨

⎩

�(2−β)τn
θT t, t ∈ [0, θT [,

�(2 − β)τn, t ∈ [θT, (1 − θ)T ],
�(2−β)τn

θT (T − t), t ∈](1 − θ)T, T ].

Clearly ωi,n(0) = ωi,n(T ) = 0 for i = 1, 2, and {ωn} converges strongly to (0, 0) in
X. By the same arguing as inside in Theorem 3.1, we have

Iλ(ω1,n, ω2,n) = �(ω1,n, ω2,n) − λ �(ω1,n, ω2,n)

≤ ρ(P(α, θ)+Q(β, θ))τ 2n −λ

∫ (1−θ)T

θT
F(t, �(2−α)τn, �(2−β)τn)dt

≤ ρ�(1 − λ ε1)τ
2
n

< 0 = Iλ(0, 0).

for n large enough. This together with the fact that ‖ωn‖X = ‖(ω1,n, ω2,n)‖X → 0
shows that Iλ has not a local minimum at zero, and the claim follows.

The alternative of Lemma 2.9 case (2) ensures the existence of sequence {(un, vn)}
of pairwise distinct local minima of Iλ which weakly converges to (0, 0). This com-
pletes the proof of Theorem 3.2.

Finally, we present an example to illustrate our main results. ��
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Example 3.3 Consider the following fractional differential system:

⎧
⎨

⎩

t D0.75
1 ((2 + t) · 0D0.75

t u(t)) = λ Fu(t, u(t), v(t)) + 1
4 sin u(t), 0 < t < 1,

t D0.8
1 ((1+t3) · 0D0.8

t v(t))=λ Fv(t, u(t), v(t))+ 1
3

3
√

v(t)+1−1, 0 < t < 1,
u(0) = u(1) = 0, v(0) = v(1) = 0,

(3.16)

where T = 1, α = 0.75, β = 0.8, a(t) = 2 + t, b(t) = 1 + t3, and h1(u) =
1
4 sin u(t), h2(v) = 1

3
3
√

v(t) + 1 − 1. Moreover, for all (t, u, v) ∈ [0, 1] × R2, put
F(t, u, v) = (1 + t2)H(u, v), where

H(u, v) =
⎧
⎨

⎩
(ξn+1)

3e
− 1

1−
[

(u−0.9064ξn+1)
2+(v−0.9182ξn+1)

2]

, (u, v) ∈ 	,

0, (u, v) ∈ R2 \ 	,

where

	 =
⋃

n≥1
{(u, v) : (u − 0.9064ξn+1)

2 + (v − 0.9182ξn+1)
2 < 1},

and ξ1 = 1, ξn+1 = n(ξn)
5
3 + 1 for all n ∈ N.

Obviously, h1, h2 : R → R are two Lipschitz continuous functions with the
Lipschitz constants L1 = 1

4 , L2 = 1
9 and h1(0) = h2(0) = 0; F(t, 0, 0) = 0 for all

t ∈ [0, 1]. With the aid of direct computation we have that a0 = 2, b0 = 1, and

M ≈ 1.2302, κ ≈ 0.8520, ρ ≈ 1.1480.

Let θ = 1
4 , then we have

P(α, θ) = P(0.75, 0.25) ≈ 7.9576, Q(β, θ) = Q(0.8, 0.25) ≈ 4.4641,

hence � = 7.9576. Then all conditions of Thorem 3.1 are satisfid. In fact, the con-
ditions (H0), (H1) and (H2) hold. For every n ∈ N, the restriction of H(u, v) on 	

attains its maximum in (0.9064ξn+1, 0.9182ξn+1) and

H(0.9064ξn+1, 0.9182ξn+1) = (ξn+1)
3e−1.

Moreover,

sup
|u|+|v|≤0.9064ξn+1−1

H(u, v) = (ξn)3e−1,
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and so

B∞ = lim sup
n→+∞

∫ 3/4
1/4 (1 + t2)H(0.9064ξn+1, 0.9182ξn+1)dt

(ξn+1)2

= 96

61
· lim

n→+∞
(ξn+1)

3e−1

(ξn+1)2
= +∞,

and

A∞ = lim inf
n→+∞

∫ T
0 (1 + t2) sup

|u|+|v|≤0.9064ξn+1−1
H(u, v)dt

(0.9064ξn+1 − 1)2

= 4

3
· lim

n→+∞
(ξn)

3e−1

(0.9064ξn+1 − 1)2

= 0 <
κ

8Mρ�
B∞,

which implies that the condition (H3) holds. Hence, owing to Theorem 3.1, for each
λ ∈]0, + ∞[, the coupled system (3.16) admits an unbounded sequence of weak
solutions.
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